Organic electronic materials possess a variety of attractive processing features over their conventional semiconductor counterparts. Despite these processing advantages, the resulting device performance can lag those based on conventional electronic materials. Interestingly, unique synergies and functionalities are often possible when materials and devices are designed that combine both organic and inorganic building blocks, often leading to favorable combinations of attractive processing and unique performance. Recently, this has been especially evident in the emergence of hybrid, organometal-halide perovskite photovoltaics and printable metal-oxide electronic circuitry. This workshop will examine recent advances and remaining challenges to the broad application of hybrid organic-inorganic electronic materials for application in solar energy conversion and flexible electronics.